Informatiksysteme

Themen

		5
	Seite	
Aufbau eines Computers – EVA-Prinzip	108	1
Speichern von Daten	110	2
Schnittstellen	112	3
Aufbau lokaler Netzwerke	114	4
Verbindung von Computern ins Internet	116	5
Speichermedien und Speicherorte	118	6
Mobiles Internet	120	7
weitere Themen sieh	e Seite 107	

Informatiksysteme

Themen

		5
	Seite	
Aufbau lokaler Rechnernetze	122	8
Client-Server-Prinzip	124	9
IP-Adresse	126	10
E-Mail-Adressen	130	11
Paketorientierte Datenübertragung	132	12
Protokolle	136	13
OSI-Schichtenmodell	139	14
Domain Name System (DNS)	142	15
DNS in lokalen Rechnernetzen	144	16
Lokales Rechnernetz in FILIUS simulieren	147	17
Internet in FILIUS simulieren	151	18

Aufbau eines Computers – EVA-Prinzip

Computer sind aus unserem Alltag heute kaum mehr wegzudenken. Auch Smartphones oder Tablets sind kleine, aber leistungsfähige Computer.

Alle Computer – große ebenso wie kleine – sind nach dem gleichen Prinzip aufgebaut, dem so genannten EVA-Prinzip.

"E" – Eingabe

Auch wenn wir beim Wort "Eingabe" zunächst an eine Tastatur denken, ist das nur eine von zahlreichen Möglichkeiten. Auch die Maus, das Touchpad und die Webcam unseres Computers sind Eingabegeräte, ebenso der Joystick und der Controller an der Spielkonsole.

Selbst Scanner, Mikrofon, Barcode- oder Kartenleser zählen zu den Eingabegeräten. All diesen Geräten ist gemeinsam, dass sie Daten, eingegebene Befehle, Töne oder Bilder empfangen bzw. registrieren.

"V" – Verarbeitung

Die Rechenoperationen zur Verarbeitung der empfangenen Befehle oder Daten werden durch die Zentraleinheit des Computers ausgeführt.

Das Herzstück der Zentraleinheit ist der zentrale Prozessor CPU (englisch **C**entral **P**rocessing **U**nit). In der CPU werden die Datenflüsse gesteuert und notwendige Berechnungen durchgeführt.

Der Prozessor greift dabei auf den Arbeitsspeicher und die Festplatte zu, auf der die Eingaben zur Verarbeitung abgelegt sind.

"A" – Ausgabe

Die berechneten Daten werden anschließend wieder ausgegeben. Für die Ausgabe fällt einem zunächst ein Bildschirm ein. Aber ebenso kann man Daten auch mit anderen Geräten ausgeben, beispielsweise Text auf einem Drucker, Musik und Töne mit einem Lautsprecher oder Kopfhörern, Bilder auf einem Beamer usw.

Aufbau eines Computers – EVA-Prinzip

Ordne diese Geräte den Kategorien Eingabegeräte und Ausgabegeräte zu:

Anzeigedisplay, Beamer, Bildschirm, Braillezeile, Controller, Drucker, Grafiktablett, Joystick, Kamera, Lautsprecher, Mikrophon, Scanner, Tastatur, Touchpad

Eingabegeräte	Ausgabegeräte
Controller	Anzeigedisplay
Grafiktablett	Beamer
Joystick	Bildschirm
Kamera	Braillezeile
Mikrophon	Drucker
Scanner	Lautsprecher
Tastatur	
Touchoad	

Aufgabe 2

Nenne mindestens drei Eingabefunktionen eines Smartphones (Hardware und Apps).

- Touchscreen
- Beschleunigungssensor
- Mikrophon
- Kamera
- QR-Code-Scanner-App

Aufgabe 3

Nenne mindestens zwei Ausgabefunktionen eines Smartphones (Hardware und Apps).

- Display
- Lautsprecher
- Kopfhörerausgang / Kopfhörer

Aufgabe 4

Gibt es auch im menschlichen Körper Abläufe, die dem EVA-Prinzip ähneln?

Beschreibe ein geeignetes Beispiel.

Beispiel Ballspielen

Die Augen erfassen den heranfliegenden Ball und leiten diese Wahrnehmung an das Gehirn weiter (Eingabe).

Das Gehirn verarbeitet die eingehende Information und koordiniert die Bewegung der Arme, um den Ball zu fangen (Ausgabe).

Mobiles Internet

Das Mobilfunknetz basiert auf Funkzellen, die jeweils über eine Sende- und Empfangsstation verfügen, die so genannte Basisstation. Die Größe der Funkzellen hängt von der Anzahl der darin befindlichen Mobilfunknutzer ab und ist sehr unterschiedlich. Im ländlichen Raum sind Funkzellen bis zu 10 Kilometer groß, in Städten sind sie mit wenigen Hundert Metern deutlich kleiner und auf Bahnhöfen oder Flughäfen können Funkzellen sogar nur wenige 10 Meter umfassen.

Im Herbst 2019 gab es in Deutschland insgesamt 72.447 Basisstationen, davon allein 8.720 in Baden-Württemberg¹⁾.

Jedes eingeschaltete Smartphone verbindet sich automatisch mit der Basisstation der Funkzelle, in der es sich befindet. Die Basisstation ist über Kabel- oder Funkverbindungen mit einer Vermittlungsstelle des Netzbetreibers verbunden. Von dort werden Telefonate zum Empfänger im Telefon- oder Mobilfunknetz weitergeleitet.

Die Vermittlungsstelle stellt – quasi als Router – auch die Verbindung zum Internet her. Darüber hinaus werden dort alle Verbindungen registriert und die Abrechnung mit dem Mobilfunkanbieter geregelt. Die Voraussetzung, dass wir unser Smartphone mit dem Internet verbinden können, wurde 1992 mit der Einführung der digitalen Mobilfunktechnik geschaffen. Der damals eingeführte GSM-Standard (Global System for Mobile Communication) markierte den Start der zweiten Mobilfunkgeneration (2G). Auch heute treffen wir unter dem Namen EDGE teilweise noch auf diesen Standard.

Der im Jahr 2003 eingeführte UMTS-Standard (Universal Mobile Telecommunications System) steht für den Mobilfunk der dritten Generation (3G). Mit UMTS war die schnelle Übermittlung großer Datenmengen möglich. Damit waren nun multimediale Anwendungen wie das Abspielen von Videos oder das Surfen im Internet auch unterwegs möglich.

Im Jahre 2010 wurde in Deutschland der LTE-Standard (Long Term Evolution) eingeführt, der in seiner Weiterentwicklung als LTE-Advanced für die vierte Mobilfunkgeneration (4G) steht.

Derzeit beginnt die Einführung der fünften Generation von Mobilfunknetzen (5G). Mit 5G können Daten in Echtzeit übertragen werden, was die Voraussetzung für selbstfahrende Autos ist und Anwendungen wie chirurgische Operationen aus der Ferne oder Fahrzeugwindschutzscheiben mit Augmented Reality ermöglicht.

Schematischer Aufbau einer mobilen Verbindung vom Smartphone ins Internet und ins Telefonnetz

¹⁾ https://emf3.bundesnetzagentur.de/statistik_funk.html (Stand November 2019)

Mobiles Internet

Aufgabe 1

Wie entsteht beim Mobilfunk eine Gesprächsoder Datenverbindung?

Das Smartphone verbindet sich mit der Basisstation der Funkzelle, in der es sich befindet. Die Basisstation ist mit einer Vermittlungsstelle verbunden.

Die Vermittlungsstelle leitet Telefonate zum Empfänger im Telefon- oder Mobilfunknetz weiter und stellt die Verbindung zum Internet her.

Aufgabe 3

Ermittle, welches Mobilfunknetz in deinem Ort verfügbar ist und zu welcher Generation es gehört.

Aufgabe 4

Suche Mobilfunkantennen im Umfeld deiner Schule und deines Zuhauses.

Aufgabe 2

Wodurch wird die Größe einer Funkzelle bestimmt?

Die Größe der Funkzellen hängt von der Anzahl der darin befindlichen Mobilfunknutzer ab. Dadurch sind Funkzellen auf dem Land groß und in Städten sehr klein.

ielester with

E-Mail-Adressen

Der Begriff "E-Mail" ist eine Abkürzung des englischen "electronic mail", bedeutet also soviel wie "elektronische Post". Das Versenden und Empfangen von E-Mails gehört zu unserem Alltag. Jeden Tag werden weltweit über 300 Milliarden E-Mails verschickt ¹⁾. Grund genug, sich genau anzuschauen, wie die E-Mail-Übertragung funktioniert.

E-Mails werden in lokal auf dem Rechner installierten E-Mail-Programmen oder mit Hilfe von Webmail-Diensten im Internet geschrieben. Nach dem Absenden gelangt die E-Mail zunächst zum so genannten E-Mail-Provider, also dem Unternehmen, bei dem das E-Mail-Postfach eingerichtet ist.

Beim E-Mail-Provider (von lateinisch providere "versorgen") wird geprüft, ob die E-Mail-Adresse zu einer echten Domain gehört und tatsächlich existiert. Werden Domain oder Adresse nicht gefunden, wird die Mail zurück an den Absender geschickt.

Wenn die Adresse existiert, leitet der E-Mail-Provider die Nachricht über das Internet an den E-Mail-Provider des Empfängers weiter. Dort wird auch noch einmal kontrolliert, ob die Adresse richtig ist. Anschließend wird die Nachricht auf dem Empfänger-Mailserver gespeichert. Von dort kann der Empfänger die E-Mail abrufen, sobald er sein E-Mail-Programm öffnet.

Dieser ganze Prozess vom Absenden bis zum Empfangen einer E-Mail dauert häufig nur wenige Sekunden. Damit Annas Nachricht auch bei Ben ankommt, muss sie mit einer weltweit eindeutigen Adresse versehen sein, die sowohl den Empfänger als auch die Domain enthält, zu der die E-Mail-Adresse gehört.

Der Aufbau der Adressen wird durch das Protokoll SMTP (von englisch Simple Mail Transfer Protocol) definiert, das den Transport von E-Mails durch das Internet steuert.

Nach diesem Protokoll bestehen E-Mail-Adressen aus zwei Teilen: dem lokalen Teil und dem Domain-Teil.

Der lokale Teil bezeichnet die Adresse innerhalb der Domain. Häufig entspricht der lokale Teil dem Benutzernamen, in unserem Beispiel dem Namen Marie Muster, oder einer Funktion wie bei kontakt@beispiel.de.

Der lokale Teil der E-Mail-Adresse muss innerhalb der Domain eindeutig sein. Er darf nur Buchstaben und Zahlen sowie bestimmte weitere Zeichen enthalten, und zwar !#\$%&'*+-/=?^_`{]}~. Umlaute, Buchstaben mit Akzenten und Leerzeichen sind nicht erlaubt.

Der Domain-Teil besteht aus dem Namen der Domain und der Domain-Endung, hier also beispiel.de.

Seit der Erfindung der E-Mail im Jahre 1971 wird das @-Zeichen als Trennzeichen zwischen lokalem Teil und Domain-Teil verwendet. Es wird At-Zeichen genannt (von englisch at "bei").

¹⁾ https://www.radicati.com/wp/wp-content/uploads/2020/01/Email_Statistics_Report,_2020-2024_Executive_Summary.pdf (Stand April 2020)

E-Mail-Adressen

Markiere den lokalen Teil und den Domain-Teil der E-Mail-Adresse anna.ameise@beispiel.de.

Aufgabe 2

Sind diese E-Mail-Adressen zulässig oder nicht? Begründe, warum sie nicht zulässig sind.

ben-bussard@beispiel.de

david delfin@beispiel.de

emma{die-allerbeste}@beispiel.de

laura.löwe@beispiel.de

stella=12345@beispiel.de

tim&struppi@beispiel.de

zoé_zander@beispiel.de

Diese E-Mail-Adressen sind zulässig: ben-bussard@beispiel.de emma{die-allerbeste}@beispiel.de stella=12345@beispiel.de tim&struppi@beispiel.de

Diese E-Mail-Adressen sind nicht zulässig: david delfin@beispiel.de Das Leerzeichen ist nicht zulässig. laura.löwe@beispiel.de Der Umlaut ö ist nicht zulässig. zoé_zander@beispiel.de

Das e mit Akzent ist nicht zulässig.

Aufgabe 3

Erstelle drei gültige E-Mail-Adressen für die Domain beispiel.de.

maja.maus@beispiel.de paul_29.02.2005@beispiel.de lisa.klasse8a@beispiel.de ronja+r*uber@beispiel.de

Aufgabe 4

Erstelle drei E-Mail-Adressen für die Domain beispiel.de, die als lokalen Teil eine Funktion enthalten.

sekretariat@beispiel.de versand@beispiel.de einkauf@beispiel.de karriere@beispiel.de bewerbungen@beispiel.de

Bedienoberfläche

In FILIUS lassen sich virtuelle Rechnernetze aufbauen und konfigurieren. Auf der Bedienoberfläche befinden sich neben den Buttons für das Anlegen, Öffnen und Speichern von FILIUS-Dateien alle weiteren wichtigen Buttons und Elemente.

- 1 Texteditor aufrufen
- 2 Entwurfsmodus aufrufen
- 3 Aktionsmodus aufrufen
- 4 Geschwindigkeit der Aktionen einstellen
- 5 Netzkomponenten zur Auswahl
- 6 Arbeitsfläche

Ein Rechnernetz aufbauen

Rechnernetze werden im Entwurfsmodus erstellt. Die Komponenten werden aus der Palette (5) auf die Arbeitsfläche gezogen. Zum Verkabeln wird das Kabel links oben durch Klick aktiviert. Die zu verbindenden Komponenten werden nacheinander angeklickt. Ein Rechtsklick oder die Esc-Taste beenden den Verkabelungsmodus.

Komponenten konfigurieren

Durch Doppelklick auf eine Komponente öffnet sich unten der Konfigurationsbereich. Dort werden neben dem Namen des Rechners auch seine IP-Adresse und weitere Adressen eingetragen.

Name	Neues Notebook
MAC-Adresse	AA:50:6E:EA:52:7A
IP-Adresse	192.168.0.10
Netzmaske	255.255.255.0
Gateway	
Domain Name Server	

Aktionsmodus

Der Aktionsmodus simuliert die Bedienung der einzelnen Netzwerkkomponenten und die Funktion des gesamten Netzwerks. Ein Doppelklick auf einen Rechner öffnet dessen "Bildschirm".

Ein Klick auf Software-Installation öffnet ein Fenster, in dem die gesamte Software aufgelistet ist, die für den Betrieb der Netzwerkkomponenten zur Verfügung steht. Dazu gehören sowohl Funktionen, die nur auf Servern benötigt werden, als auch Funktionen für die Client-Rechner.

Ping

Mit dem Befehl **ping** kann man testen, ob ein bestimmter Rechner oder Server in einem Netzwerk erreichbar ist. Dazu wird der Befehl **ping** gefolgt von der IP-Adresse des Zielrechners oder -servers in die Befehlszeile eingegeben.

Datenaustausch

Der Datenaustausch zwischen den Komponenten des virtuellen Rechnernetzes wird protokolliert. Im Aktionsmodus öffnet sich bei Rechtsklick auf eine Komponente ein Kontextmenü. Wählt man "Datenaustausch anzeigen" öffnet sich ein Fenster, das ein Protokoll des gesamten Datenaustauschs zeigt, an dem die aktuelle Komponente beteiligt war.

Neben den IP-Adressen von Quelle und Ziel ist in der Liste auch das Protokoll vermerkt, nach dem die jeweilige Kommunikation abläuft, und die Schicht aus dem Internetschichtenmodell (DOD-Schichtenmodell), zu der das Protokoll gehört.

	Ulenausta	nesch.				× ×
	echner 0.1	0 - 192,168,0.10	x			
N	Zeit	Quelle	248	P1000K	Schicht	Bemellungen
1	15:17.51	192.185.0.10	182.148.0.1	ARP	Meranitaki	Suche much MAC Fig 182-141-0-1, 182-18
2	15.17.51	192.182.0.1	193.148.0.10	ARP	Vermittle	182.148.0.1: E7:E9:94:10:UE:A7
3	18.17.01	192.169.0.15	192.168.1.16	KMP	Vermittela.	100 Kabo Request (pingt, TTL) 44, Seg
4	15:17:52	192.102.1.10	192.108.0.10	KMP	Vermittle	100 Enho Reply (poop), TIL: 61, Seq
5	18.17.52	192.168.0.10	192.148.1.16	KMP	Vermittle.	1007 Kins Request (plog), TTL: 64, Seg
1	18:17:52	192.148.1.15	192.146.0.10	KMP	Vermittle.	10th Echo Raply (pong), 221r 61, Seq
7	15:17:53.	192,185.0.15	182.188.1.18	EMP	Vermink	IDS finn Request (pings, TIL: 64, Sec
Ē	15.17.53.	192.142.1.30	192.146.0.10	KNP	Vermittle.	1007 Edis Septy (poog). TIL: 63, Sec
3	15.17.54	192.188.0.10	191.148.1.10	CHP.	Vermitte.	100 Echo Request (ping), 221: 44. Sep
12	18-17-55	197.188.1.15	192.144.0.10	KMP	Vermittle.	1000 Etho Septly (pongs, Till: 43, Beg

Die Simulationsumgebung FILIUS wurde an der Universität Siegen unter der Leitung von Dr. Stefan Freischlad entwickelt. Auf der Website https://www.lernsoftware-filius.de stehen die aktuellste Version der Software und diverse Begleitmaterialien zum Download bereit.

Aufgabe 1 – Rechnernetz

Baue ein Rechnernetz gemäß folgender Skizze auf. (Router = Vermittlungsrechner)

17

EMS

Aufgabe 2 – IP-Adressen

Konfiguriere die Komponenten des Rechnernetzes, indem du ihnen eindeutige Namen und IP-Adressen zuweist. Orientiere dich dabei an den Angaben aus der Skizze und der Tabelle.

IP-Adresse
192.168.0.10
192.168.0.11
192.168.0.12
192.168.1.10
192.168.1.11
192.168.1.12
192.168.1.13

50;

0

Aufgabe 3 – Vermittlungsrechner (Router)

- a) Konfiguriere den Vermittlungsrechner (Router), indem du für die Verbindungen jeweils eine IP-Adresse eingibst:
 - Verbindung zum Netzwerk 0: 192.168.0.1
 - Verbindung zum Netzwerk 1: 192.168.1.1

b) Trage die IP-Adressen des Vermittlungsrechners (Routers), der als so genanntes Gateway dient, in die Konfigurationen aller Rechner und Server ein. Achte dabei auf die richtige IP-Adresse für das entsprechende Netz.

Rechner 0.11	/	Switch	Switch
. /	/		
		Vermittungsrechner	L
168.0.1	192.168.1.1 V	Veiterleitungstabelle	
	Verbunden mit	t Switch	
	IP-Adresse	102.168.1.1	
	Netzmaske	255.255.255.0	
	MAC-Adresse	50 ET 98 7X 12 #2	
Name	5	Rechner 0.10	
Name MAC-Adresse	5.	Rechner 0.10 4A:4F:AC:FA:CD:EF	
Name MAC-Adresse IP-Adresse	5.6	Rechner 0.10 4A:4F:AC:FA:CD:EF 192.168.0.10	
Name MAC-Adresse IP-Adresse Netzmaske	54	Rechner 0.10 4A:4F:AC:FA:CD:EF 192.168.0.10 255.255.255.0	
Name MAC-Adresse IP-Adresse Netzmaske Sateway	54	Rechner 0.10 4A:4F:AC:FA:CD:EF 192.168.0.10 255.255.255.0 192.168.0.1	

Aufgabe 4 – Ping

a) Installiere auf dem Rechner 0.10 die Software "Befehlszeile". Speichere das Projekt ab.

Soiels.

b) Teste, ob du den Rechner 1.10 über das Netzwerk erreichen kannst. Stelle die Geschwindigkeit der Aktion auf das Minimum ein, damit du besser beobachten kannst, was geschieht.

Öffne die Befehlszeile auf dem Rechner 0.10, gib den Befehl **ping 192.168.1.10** ein, bestätige mit Return und beobachte die Verbindungen zwischen den beiden Rechnern.

17

c) Führe den Befehl noch einmal aus und beobachte die Verbindungsleitungen. Was fällt dir auf? Hinweis: Um das Ergebnis von Aufgabe b) noch einmal zu erhalten, gehe so vor:

- Befehlszeilen-Fenster schließen,
- in den Entwurfsmodus wechseln
- zurück in den Aktionsmodus wechseln,
- Aufgabe b) ausführen

Aufgabe 5 – Datenaustausch

Öffne das Projekt aus Aufgabe 4a) noch einmal neu. Führe den Befehl **ping 192.168.1.10** aus. Analysiere nun den Datenaustausch, der durch den Befehl **ping** angestoßen wurde.

- a) Welche Kommunikation ist in den Zeilen 1 und 2 protokolliert?
- b) Der Befehl **ping** wird 4-mal ausgeführt. Wie viele Einträge in der Liste gehören zu jedem Ping? Was ist jeweils als Quelle und Ziel angegeben?
- a) In den ersten beiden Zeilen ist die Suche nach dem Rechner 1.10 protokolliert. Dabei kontaktiert der Rechner 0.10 den Vermittlungsrechner (Router) 192.168.0.1, der daraufhin antwortet.

.,	uv	u		
			5	
			F.	
_	0	ク		

-19	atenmeta	resch.				
	icheer 0.1	0 - 192,168.0.10	X			
Nr.	Zeit	Ouelle	25et	Ринк.	Behicht	Bemerlungen
t.	19:02:13	192-188-0-10	192.146.0.1	ARP	Vermetta	Dame weak HOC Fir 182.147.0.1, 187.14
2	19:02:15	177.188,0.1	192.188.9.10	ARP	Venestel.	192-148.0.1: 6A:#2:08:49:54:57
3	19 02 15	197,145.0.10	192.165.1.10	KNP	Vermitte.	100 Erts Sement (ping), TTL: 44, Sec
ŧ	10.02.21	190.160.1.10	192.140.0.10	END	Vermittle.	ICHE Echo Reply (pons), Tile 67, Sep
1	10.02.21	100.148.0.10	192.148.1.10	KHP	Wevenante	100 Etta Report (ping), III. 44, Sec
1	1902.25	197.188.1.10	182.186.0.10	KMP	Vermitthe	1947 Etho Begly (gong), TIL: 61, Seg
7	19.92 25	192-146.0.10	142.144.1.10	K100	Vermittle	100 Take Report (pang), The 44, Sep
1	19/82/30	192.148.1.10	192.146.0.10	KHP	Veventille	100 Erbs Reply (poog), Tile 41, Sep
	1902.38	192,168,8.30	392.168.3.30	EMP	Versite.	1099 Finh Report mings, 221/ 44, 749
12	10/02/34	192.148.1.10	192.146.0.10	KHP	Vermin	IGO Etto Reply (peng), TIL: 61. Sep

 b) Die Liste der Ping-Befehle hat acht Einträge (Einträge 3 bis 10). Zu jedem Ping gehören 2 Einträge: Der an den Zielrechner geschickte Ping und die Antwort Pong.